
Numerical Methods for the Observational Model

Author:

George Crowley (217889)

Supervisors: Prof Anotida Madzvamuse, Dr James Van Yperen

and Dr Eduard Campillo-Funollet

School of Mathematical and Physical Sciences

University of Sussex

May 2022

Acknowledgements

I would like to extend my sincere thanks to Anotida for giving me the opportunity to work under him,
without whom this project would not have been possible. I would also like to extend my deepest gratitude
to James, who has consistently been the source of encouragement and excellent ideas behind this project,
who also without, would not have made this project possible. I would also like to thank James for his
commitment on previous projects in which gave insight to the work in this thesis, and that I wish him
the best in his academic journey. I am unable to express my full gratitude to you both. I would also
like to thank those who I have spoken to in passing, that have also suggested thoughtful ideas that have
contributed to this work.

I would also like to give thanks to my friends and family, and especially my partner Helen for their
continued love and support.

i

Contents

1 Abstract 1
1.1 Motivation for a new model . 1
1.2 Derivation of the Observational model . 2
1.3 Boundary conditions . 2
1.4 The well-posedness of the Observational model . 3
1.5 Abstract of numerical methods . 4

2 The Shooting Method 4
2.1 How does the shooting method work? . 4
2.2 Adapting the shooting method to the Observational model 6
2.3 Shooting method results . 7
2.4 Sensitivity of the Newton-Broyden algorithm . 11
2.5 Estimating the order of convergence for the Newton-Broyden algorithm 11

3 The Finite Element Method 13
3.1 The Euler Lagrange equations . 14
3.2 The Isoperimetric problem . 15

3.2.1 Derivation and calculations . 15
3.2.2 Results . 17

3.3 Adapting the Isoperimetric problem to solve the Observational model 18
3.3.1 Choosing a finite element scheme - Newtons method 20
3.3.2 Calculating the finite element formulation . 21
3.3.3 Choosing the initial finite element approximation 25
3.3.4 Assembling the scheme . 26

3.4 Finite element results . 26

4 Discussion of results 28

5 Algorithms 29
5.1 Shooting method algorithm . 29
5.2 Finite element algorithm . 30

6 Supplemental section 31
6.1 Quadrature - trapezium method . 31
6.2 Well-posedness example of Poisson’s equation with Neumann boundary values and an

integral constraint . 31

7 Source Code for MATLAB Simulations 32

List of Figures

1 Linear interpolation of the shooting Method, Solution is given by upxq “ ´ex, initial
guesses ψ1 “ 0, ψ2 “ 5, ∆x “ 0.1. 5

2 I(0)= 20, ∆t “ 0.0025, Initial guesses: 2.3.1. 8
3 I(0)= 20, ∆t “ 0.0025, Initial guesses: 2.3.2. 9
4 I(0)= 184, ∆t “ 0.0025, Initial guesses: 2.3.3. 10
5 I(0)= 184, ∆t “ 0.0025, Initial guesses: 2.3.4. 10
6 Linear Basis functions (also called ”hat functions”) as defined in 3.0.3. 13
8 Finite element approximation, I(0)= 184, ∆t “ 0.0025 with parameters in 2.3. 26
9 Finite element approximation using our derived initial guess, I(0)=20, ∆t “ 0.0025. 27
10 Finite element approximation using a translation of the solution, I(0)=20, ∆t “ 0.0025. . 27

ii

List of Abbreviations, Parameters and Function Spaces/Norms

SIR Susceptible - Infectious - Removed

ODE Ordinary Differential Equation

IVP Initial Value Problem

BVP Boundary Value Problem

FEM Finite Element Method

EOC Estimated Order of Convergence

FTC Fundamental Theorem of Calculus

IBP Integration by Parts

RK4 Runge-Kutta 4’th Order Method

β Average transmission rate

γ Average removal rate

N Population size

r Under-reporting parameter P p0, 1q

For the following definitions, Ω Ă R, (Ω Bounded).

L2pΩq :“

"

f : Ω Ñ R
∣∣∣ ż

Ω

fpxq2 dx ă 8

*

}f}L2pΩq :“

ˆ
ż

Ω

fpxq2 dx

˙
1
2

}f}L8pΩq :“ sup
xPΩ

|fpxq|

H1pΩq :“

#

f : Ω Ñ R
∣∣∣ ∥f∥2L2pΩq`

∥∥∥∥ dfdx
∥∥∥∥2
L2pΩq

ă 8

+

}f}H1pΩq :“

˜

∥f∥2L2pΩq`

∥∥∥∥ dfdx
∥∥∥∥2
L2pΩq

¸
1
2

f 1pxq “

ˆ

df

dx

˙

For the purposes of this dissertation, all true solutions we consider are assumed to

be continuously differentiable as many times as needed.

iii

1 Abstract

The human race is no stranger to the danger and impact of prevalent infectious diseases. Epidemiology,
the study of diseases, is concerned with the spread of diseases and what will happen, in an attempt
to deploy countermeasures in aid of mitigating further spread. Epidemiologists often model infectious
diseases using ’compartmental models’, where they compartment the population into smaller subsections,
due to their simplicity and wide range of applications. The simplest and most well known of these
compartmental models is the ’Susceptible - Infectious - Removed’ equations, developed by Kermack and
Mckendrick, perhaps better known as the ’SIR’ equations. In order to solve the SIR equations, one must
know the initial conditions for each of the compartments, in which any set of (positive) conditions can
be prescribed. Moreover, any data collected (about infectious cases) showcases changes happening to
the infectious compartment and not necessarily about its initial condition to start with, hence a new
model needs be derived to interpret these initial conditions, given data. In this dissertation, we explore
numerical methods to obtain solutions to the ’Observational model’ [1], a second order nonlinear and
nonlocal ODE derived by reformulating the SIR model in terms of the detected cases. By using the
Observational model, we can re-interpret the data given as changes to the infectious compartment in
conjunction with the necessary parameters associated, to solve for an initial condition to the infectious
compartment in the SIR model. The motivation behind this is to see if we can find a more efficient time,
cost and accuracy driven numerical method(s) than the method shown in [1] and deduce any further
results about either method. In the first approach outlined in [1], we use an IVP approach to solving the
Observational model, using point value guesses at t “ 0. In the second approach, using a nonlinear finite
elements scheme, we use an exponential type curve formed in conjunction with the data as an initial
guess, and hence take different approaches to see which method produces the best results.

1.1 Motivation for a new model

The SIR equations are a set of three simultaneous first order ODEs given as follows;

dS

dt
“ ´β

I

N
S, Sp0q “ S0, (1.1.1)

dI

dt
“ β

I

N
S ´ γI, Ip0q “ I0, (1.1.2)

dR

dt
“ γI, Rp0q “ R0. (1.1.3)

Where β denotes the average transmission rate (i.e., average number of contacts multiplied by
probability of transmission from Infectious Ñ Susceptible), and γ denotes the average removal rate (i.e.
how quickly you stop infecting others on average, e.g., by quarantining, recovering). N denotes the total
population being considered (i.e a country or county). We can deduce from the SIR equations that

dS

dt
`
dI

dt
`
dR

dt
“ 0 ùñ Sptq ` Iptq `Rptq “ C, C P R.

This implies that the population is constant, and to find C, we look at the initial conditions at the start
of the pandemic. Note that we typically set

S0 ` I0 `R0 “ N ùñ C “ N.

In which we note that I0 ě 1, otherwise nobody is infected and this model does not make sense, and
that the other initial conditions are non-negative. The important question to ask is, do we really know
the initial conditions, or even how to find them at the start of an epidemic? What information can we
gather to help us decide on the initial conditions or even the parameters β and γ?

In the approach taken by the SIR equations, one can formulate multiple simulations and parameters to
try and model an epidemic using the SIR approach, however - in an ever changing environment, this
does not always give good or even legible results. The need for a new model that can take information
as it comes would lead to a more confident projection of the current spread. For example, the UK
government provides statistical figures on a daily basis on the number of people currently infected with
Coronavirus in the UK, along with some other hospital figures. Is there a way we can formulate a new
model using this data we are given?

1

1.2 Derivation of the Observational model

By taking equations (1.1.1,1.1.2) and adding them together, we see that

dS

dt
`
dI

dt
“ ´γI, (1.2.1)

and by taking the derivative with respect to t on both sides yields,

d2S

dt2
`
d2I

dt2
“ ´γ

dI

dt
. (1.2.2)

Furthermore, by differentiating 1.1.1, we obtain

d2S

dt2
“ ´

β

N

ˆ

S
dI

dt
` I

dS

dt

˙

. (1.2.3)

By re-arranging equation 1.1.1, so that

S “ ´
dS

dt

N

Iβ
, (1.2.4)

and substituting equation 1.2.4 into 1.2.3 gives

d2S

dt2
“ ´

β

N

ˆ

´
dS

dt

N

Iβ

dI

dt
` I

dS

dt

˙

“
dS

dt

ˆ

1

I

dI

dt
´
Iβ

N

˙

. (1.2.5)

Then by re-arranging equations 1.2.1 and 1.2.2, and inserting them into equation 1.2.5 gives

´γ
dI

dt
´
d2I

dt2
“

ˆ

´γI ´
dI

dt

˙ ˆ

1

I

dI

dt
´
βI

N

˙

,

which implies

d2I

dt2
“

ˆ

γI `
dI

dt

˙ ˆ

1

I

dI

dt
´
βI

N

˙

´ γ
dI

dt
.

Expanding what we have and rearrange we see

d2I

dt2
“ ´

γβI2

N
`

1

I

ˆ

dI

dt

˙2

´
dI

dt

βI

N
´
��������:0ˆ

γ
dI

dt
´
γI

I

dI

dt

˙

,

which gives rise to the observational model

d2I

dt2
“

dI

dt

ˆ

1

I

dI

dt
´
βI

N

˙

´
βγI2

N
, (1.2.6)

a second order, nonlinear differential equation.

1.3 Boundary conditions

Normally with any second order differential equation, IVP conditions are prescribed with an initial
condition for the function and its derivative, or in the case of a BVP, we prescribe some combination of
either Dirichlet, Neumann or Robin conditions on the boundaries. As mentioned before, we are looking
to incorporate statistical figures into the model in order to capture a more accurate picture of what is
going on. Let Xm denote the number of observations of detected cases, then we formally define

Xm :“ rγ

ż tm`1

tm

Ipsq ds, (1.3.1)

where r P p0, 1q is an under-reporting parameter and ptm, tm`1q describes the time interval of the given
data, for example - this could be days or weeks.

Intuitively, we assume that the given Xm only captures part of the picture of how many people are

2

infected, since for example, we know not everybody tests when they have symptoms, reports they have
tested positive, or possibly because they are asymptomatic - hence the need for an under-reporting
parameter. In this dissertation, we do not discuss how one would go about estimating r, but only give
examples with fixed values.

We note that these conditions are not exactly our typical Dirichlet boundary conditions, they are in
fact nonlocal boundary conditions, since they aren’t defined for a single point in time, but rather for an
interval of time.

1.4 The well-posedness of the Observational model

Before one can look for solutions, it is sensible to ask givenX0 andX1, does a solution exist? Furthermore,
is it unique? The complexity of the nonlinearity, coupled with the nonlocal boundary conditions makes
this question extremely difficult to answer. Given X0, X1 ą 0 with sensible parameters, we have existence
and uniqueness of a solution @t ą 0. For the interested reader, it is very much recommended for a deeper
insight into the analysis of the observational model and well-posedness that you read [1].

To make the problem slightly easier to digest and implement in one of our numerical methods, we make
the following substitution. Let βϵ :“ βr´1N´1 and let zptq :“ lnprγIptqq, the Observational model (1.2.6)
is equivalent to

d2z

dt2
“ ´βϵe

z

ˆ

1

γ

dz

dt
` 1

˙

, (1.4.1)

with the nonlocal boundary conditions equivalent to

Xm “

ż tm`1

tm

ezpsq ds. (1.4.2)

Proof. With regards to the nonlocal boundary conditions (1.4.2), it is clear to see

Xm “

ż tm`1

tm

ezpsq ds “

ż tm`1

tm

elnprγIpsqq ds “ rγ

ż tm`1

tm

Ipsq ds.

In order to prove the change for the Observational model (1.2.6), we first make the following observations.

zptq “ lnprγIptqq ðñ Iptq “
ezptq

rγ
, (1.4.3)

6
d

dt
pIptqq “

d

dt

ˆ

ezptq

rγ

˙

“
ezptq

rγ

dz

dt
, (1.4.4)

ùñ
d2

dt2
pIptqq “

d

dt

ˆ

ezptq

rγ

dz

dt

˙

“
ezptq

rγ

˜

ˆ

dz

dt

˙2

`

ˆ

d2z

dt2

˙

¸

. (1.4.5)

Substituting equations 1.4.3,1.4.4 and 1.4.5 into equation 1.2.6;

ezptq

rγ

˜

ˆ

dz

dt

˙2

`

ˆ

d2z

dt2

˙

¸

“
ezptq

rγ

dz

dt

ˆ

ezptq

rγ

dz

dt

rγ

ezptq
´
β

N

ezptq

rγ

˙

´
βγ

N

e2zptq

r2γ2
.

Since ezptq ‰ 0, dividing by ezptq, multiplying by rγ and simplifying like terms means we can re write this
as

ˆ

dz

dt

˙2

`

ˆ

d2z

dt2

˙

“

ˆ

dz

dt

˙2

´
β

rγN
ezptq dz

dt
´

β

rN
ezptq,

ùñ
d2z

dt2
“ ´

β

rN
ezptq

ˆ

dz

dt

1

γ
` 1

˙

.

Finally, substituting βϵ “ βr´1N´1 gives the result.

3

1.5 Abstract of numerical methods

In order to solve the Observational model numerically, we first require some preliminaries. In the first
method, we use the shooting method and pose the problem as a root finding problem. The second method
involves converting 1.4.1 or 1.2.6 into a variational problem in which we make use of Lagrange multipliers
in order to reformulate a new constrained equation, where we apply the Euler Lagrange equation and
produce a finite element formulation of what is left. We now pose the problem we wish to solve; given
X0, X1, r,N, γ and β (ùñ βϵ), find zptq such that

d2z

dt2
“ ´βϵe

z

ˆ

1

γ

dz

dt
` 1

˙

, (1.5.1)

X0 “

ż 1

0

ezpsq ds | X1 “

ż 2

1

ezpsq ds. (1.5.2)

Or equivalently, find Iptq such that

d2I

dt2
“

dI

dt

ˆ

1

I

dI

dt
´
βI

N

˙

´
βγI2

N
, (1.5.3)

X0 “ rγ

ż 1

0

Ipsq ds | X1 “ rγ

ż 2

1

Ipsq ds. (1.5.4)

2 The Shooting Method

Numerically solving a second order ODE is not that difficult given some initial conditions (IVP). It is
well documented in standard literature [2, 3] of the multiple methods available for us to use. However,
when we look to solve boundary value problems, the standard approach changes slightly. As we will
shortly see, the shooting method is an excellent choice for solving BVP ODE’s, due to its high flex-ability
in terms of implementation. Of-course, when we consider moving away from linear problems and into
the realm of nonlinear problems, the need for root finders quickly becomes apparent. Therefore, whilst
solving anything more than a second order linear ODE, the shooting method becomes just one of the
building blocks used to solve these problems. In the approach for solving the Observational model with
the shooting method, we take the approach of using a root finder, but not in the way described above.
Going forward, when talking about using an IVP solver, we explicitly refer to using an RK4 solver (Runge
Kutta - fourth order) [3]. For ease of exposition, we assume g P CpΩq ùñ f P C2pΩq. For information
about numerical solution of ODEs, see the reference in the above line.

2.1 How does the shooting method work?

The shooting method takes the initial value approach, and modifies it in order to solve the BVP. In
the case of pure Dirichlet boundary conditions, as the name implies, we shoot from the first boundary
condition using an IVP approach, and depending on our initial guess for the derivative at the first
boundary value point, see if we hit the second boundary value for the other given boundary value from
the domain we are shooting from. From here, we take two approaches depending on whether or not the
problem is second order linear or second order non linear. In the second order case, the two point BVP’s
take the form

d2f

d2x
“ gpx, f, f 1q, x P ra, bs, a, b P R, (2.1.1)

fpaq “ ϕ | fpbq “ ζ, ϕ, ζ P R. (2.1.2)

The shooting method problem requires us to find ψ, given ϕ and ζ such that

d2f

d2x
“ gpx, f, f 1q, x P ra, bs, (2.1.3)

fpaq “ ϕ |
df

dx
paq “ ψ, solves 2.1.2, ψ P R. (2.1.4)

4

For the interested reader, a full explanation of the second order linear approach can be found from [3](page
653), but simply involves taking two guesses for ψ and linearly interpolating, in order to find ψ such that
fpbq “ ζ. Note the linearly interpolating is only possible in the linear case. We now give a very brief
example.

Example 2.1 (Linear shooting method with non-homogeneous Dirichlet boundary conditions). We look
to apply the linear shooting method to the following BVP;

´
d2u

dx2
“ ex, (2.1.5)

up0q “ ´1 | up1q “ ´e. (2.1.6)

Then the shooting method proposes we find ψ where

´
d2u

dx2
“ ex, (2.1.7)

up0q “ ´1 |
du

dx
p0q “ ψ, (2.1.8)

such that up1q “ ´e. One can check that indeed this is an easy example to solve, i.e. upxq “ ´ex, since
this satisfies the ODE in 2.1.5 and the boundary conditions 2.1.6. Then by using the Runge-Kutta 4’th
order IVP solver, and two guesses for ψ, we can solve this problem numerically. Let us propose two
guesses;

ψ1 “ 0 | ψ2 “ 5.

Then after interpolating the correct gradient, we have the following graph of results.

Figure 1: Linear interpolation of the shooting Method, Solution is given by upxq “ ´ex, initial guesses
ψ1 “ 0, ψ2 “ 5, ∆x “ 0.1.

In order to interpolate the correct gradient, we have used the following calculation. Let ψ3 be the correct
gradient that ensures we solve 2.1.6, then

ψ3 ´ ψ1

up1qψ3
´ up1qψ1

“
ψ2 ´ ψ1

up1qψ2
´ up1qψ1

, (2.1.9)

ùñ ψ3 “
pψ2 ´ ψ1qpup1qψ3 ´ up1qψ1q

pup1qψ2
´ up1qψ1

q
` ψ1,

where up1qψi denotes the value at up1q starting from the gradient ψi. Intuitively, one can think about this
calculation as finding the value of the derivative we are looking for in which up1qψ3 intersects the line
which connects up1qψ1

and up1qψ2
.

5

By taking ψ2 “ 5, ψ1 “ 0, we can calculate up1qψ1
“ ´1.7183 and up1qψ2

“ 3.2817 by using the Runge-
Kutta solver. Since we are given up1qψ3

“ ´e from the boundary value of the problem, then

ψ3 “
pψ2 ´ ψ1qpup1qψ3 ´ up1qψ1q

pup1qψ2
´ up1qψ1

q
` ψ1 “

p5 ´ 0qp´e` 1.7183q

3.2817 ` 1.7183
` 0 “ ´1.

From the solution, upxq “ ´ex ùñ
du

dx
p0q “ ´1, and hence the result found. More information about

this is found in the above reference.

The cost of solving a linear second order ODE is very low, since it only takes two guesses and some
linear interpolating to find ψ to get the desired solution. Depending on the IVP approach one takes (i.e
which numerical solver one uses) can dictate whether or not you look for accuracy, speed or both. This
becomes important when we move to the Observational model, as here we require both speed, accuracy
since multiple iterations of a root finding algorithm will be needed, of which we will see shortly.

2.2 Adapting the shooting method to the Observational model

As discussed in the above section, depending on whether or not the ODE is linear or non linear decides
the approach one takes. Moreover, we also no longer have any type of standard boundary conditions,
but instead nonlocal integral boundary conditions (1.5.2 or 1.5.4). In this approach, we seek to find the
initial value conditions such that 1.5.2 or 1.5.4 are satisfied. We pose this problem as the following; given
β, r and γ, find ϕ and ψ such that

zp0q “ ϕ |
dz

dt
p0q “ ψ, (2.2.1)

solves 1.5.1 with constraints 1.5.2.

In our previous example 2.1.1, we only needed to find the value of the derivative at the first boundary
value point in order to solve the problem. Here, we need to find both the derivative and its value on the
first boundary point such that when we integrate the values obtained, we satisfy the integral boundary
conditions. Thanks to [1], we know that there exists a unique solution exists for the Observational model,
given sensible parameters. Before moving any further, we must make some comments on quadrature
(numerical integration) and multi-dimensional root finding. An excellent place for information regarding
root finding is found in [3]. The need for quadrature becomes apparent when we need to calculate
integrals, given we only have point values. Moreover, due to its easy implementation, we will be using the
trapezium method going forward. If unfamiliar with quadrature, please visit the supplemental section at
the end of the dissertation before moving on, or also visit [3]. In order to find ϕ and ψ, it is equivalent
to finding the roots of the following functions

f0 “

ż 1

0

ezpsq ds´X0 “ 0 | f1 “

ż 2

1

ezpsq ds´X1 “ 0. (2.2.2)

We note going forward, the subscript denotes a vector index, and further down, the superscript denotes
iterates. When we look to find roots of equations, we normally look to a newtons method (since for close
enough guesses, we have quadratic convergence). Newtons iteration scheme for the following problem is
of the following form; given ϕi and ψi and after calculating f0, f1,

„

ϕi`1

ψi`1

ȷ

“

„

ϕi
ψi

ȷ

´

»

—

—

—

—

–

Bf0i
Bϕ

Bf0i
Bψ

Bf1i
Bϕ

Bf1i
Bψ

fi

ffi

ffi

ffi

ffi

fl

´1

„

f0i
f1i

ȷ

, (2.2.3)

with f0 and f1 calculated with the RK4 (IVP) solver and then applying the trapezium rule. Moreover,
one notices that the jacobian matrix wants to take partial derivatives with respect to the initial condition
and initial derivative which, is not easily analytically obtainable. Therefore we need to compute the
jacobian numerically.

6

A sensible estimate of the jacobian was invented by Broyden [2], in which two initial guesses are given
for tϕ0, ψ0u and tϕ1, ψ1u, and an initial jacobian matrix is estimated and updated after consecutive
iterations. The initial jacobian matrix is calculated using the finite difference approximation given by the
two (sensible) initial guesses, i.e.,

Bf0i
Bϕ

«
f0i`1 ´ f0i
ϕi`1 ´ ϕi

. (2.2.4)

The rest are analogous, for i ě 1, let

Ji :“

»

—

—

—

—

–

Bf0i
Bϕ

Bf0i
Bψ

Bf1i
Bϕ

Bf1i
Bψ

fi

ffi

ffi

ffi

ffi

fl

| ∆Fi :“

„

f0i`1 ´ f0i
f1i`1 ´ f1i

ȷ

| ∆Xi :“

„

ϕi`1 ´ ϕi
ψi`1 ´ ψi

ȷ

. (2.2.5)

Broyden showed that for jacobian’s with non-trivial analytical derivatives that a more cost effective guess,
based off the one dimensional secant root finding method, is given by

Ji`1 “ Ji `
p∆Fi ´ Ji∆Xiq p∆Xiq

T

∥∆Xi∥2
, (2.2.6)

where pqT denotes the transpose of a vector and ∥¨∥ denotes the norm. Then inserting the new approxi-
mation for the jacobian into newtons scheme (2.2.3) gives the following modified scheme;

„

ϕi`1

ψi`1

ȷ

“

„

ϕi
ψi

ȷ

´

„

Ji `
p∆Fi ´ Ji∆Xiq p∆Xiq

T

∥∆Xi∥2

ȷ´1 „

f0i
f1i

ȷ

. (2.2.7)

Implementing this into an algorithm would mean we would need to set a stopping criteria, either for
convergence (i.e we’ve found the roots), or we diverge perhaps due to not giving good initial guesses.
As a consequence, if the guesses are too far away, this may also make the jacobian approximation ill-
conditioned and hence the algorithm will fail, this will be touched on more later. The algorithm of the
Newton-Broyden method for solving the Observational method can be found in subsection 5.1.

2.3 Shooting method results

We now present some results about the effectiveness of the shooting method. In order to find out if the
shooting method converges to the solution, we need to know what the actual solution is. For the SIR
equations, there is no closed sensible form worth noting here, only that we can calculate the numerical
solution when we provide initial conditions. Simply using the RK4 solver is enough to find the numerical
solution to the SIR equations, we omit the numerical calculating of the SIR equations here. In order to
find out the effectiveness, we proceed in the following steps

1. Specify initial conditions S0, I0, R0 and paramaters β, γ, r,N .

2. Solve the SIR equations, specifically we are interested in the infected solutions on the interval r0, 2s.

3. Artificially calculate the data points X0 and X1 by using the trapezium method (1.5.4).

4. Insert these data points into the the Newtons-Broyden’s algorithm, along with given parameters.

5. Insert two initial guesses for ϕ and ψ.

6. Run the algorithm, find the errors and then calculate L2 error norm and L8 error norm.

We now take a look at two cases. An example of raising cases, and an example of decreasing cases (just for
some variety). In all examples going forward, we will be using the shooting method for the Observational
model (1.5.1), and by using the substitution zptq “ lnprγIptqq, getting the results desired.

7

Example 2.2 (Shooting method example 1 - increasing cases). Let us specify the following initial pa-
rameters of this example. Let N “ 1000 (i.e, like a small village), β “ 1.5, γ “ 1, r “ 0.75,∆t “ 0.0025.
The initial conditions are given as Sp0q “ 980, Ip0q “ 20, Rp0q “ 0. Since β ą γ, i.e. since on average
more people are being infected then being removed from the infectious compartment, these parameters
indicate we will have rising cases. By calculating the SIR solution, specifically the infectious cases, we
can calculate X0 and X1. These are calculated as X0 “ 18.9739, X1 “ 28.6179. We note that in general,
we would expect our data points to be exact, and hence some ambiguity to our pre-fabricated data points is
needed. Furthermore, we will set the tolerance as highlighted in the algorithm as 10´6, and max-iterations
as 100.

We now need to go about deducing what two sensible initial guesses are, given we only have access to
the parameters and the data points X0, X1. In this case, the difference in size between the data points is
not too dissimilar, so here we shouldn’t have too much of a problem giving some good educated guesses
about where we are starting, but for the most part this is just guesswork, especially as the size difference
between the data points increases. Let us take two initial guesses,

I0p0q “ 22,

ˆ

dI

dt

˙0

p0q “ 9, I1p0q “ 18,

ˆ

dI

dt

˙1

p0q “ 8, (2.3.1)

ùñ z0p0q “ lnp0.75 ˆ 22q,

ˆ

dz

dt

˙0

p0q “
9

22
, z1p0q “ lnp0.75 ˆ 18q,

ˆ

dz

dt

˙1

p0q “
8

18
.

Then by inserting these parameters into the Newton-Broyden algorithm gives the following results. Below
we show the infectious cases solution, our Observational model solution along with the results of the two
initial guesses. We also note the following results related to this specific example. (See figure 2).

L8 error “ 1.0806 ˆ 10´6 | L2 error “ 1.3993 ˆ 10´6.

Time till completion: 0.144899 seconds.

Iterations taken: 14.

We can see here that we get some great convergence, given the error norms. From the SIR (infectious)

equation, we can calculate
dI

dt
“ 9.4 by inserting Ip0q “ 20 and Sp0q “ 980 into 1.1.2.

So if we take a slightly closer guess to what the true solution is, we look to see how the error norms
change, and whether or not the computational time and iterations needed decreases. Let us now take;

Figure 2: I(0)= 20, ∆t “ 0.0025, Initial guesses: 2.3.1.

8

I0p0q “ 21,

ˆ

dI

dt

˙0

p0q “ 9, I1p0q “ 19,

ˆ

dI

dt

˙1

p0q “ 8.5, (2.3.2)

ùñ z0p0q “ lnp0.75 ˆ 21q,

ˆ

dz

dt

˙0

p0q “
9

21
, z1p0q “ lnp0.75 ˆ 19q,

ˆ

dz

dt

˙1

p0q “
8.5

19
.

We can then plot the results and also note the following results related to these specific initial conditions.
See figure 3.

Figure 3: I(0)= 20, ∆t “ 0.0025, Initial guesses: 2.3.2.

L8 error “ 2.8041 ˆ 10´7 | L2 error “ 3.7123 ˆ 10´7.

Time till completion: 0.178309 seconds.

Iterations taken: 13.

From the results, we can deduce that as we approach the solution, the error norms get smaller (whilst
keeping the same tolerance). We needed one less iteration and roughly the same computational time for
MATLAB to run the code.

We now look at a case where β ă γ in which prompts us to see we will have decreasing cases.

Example 2.3 (Shooting method example 2 - decreasing cases). Let us specify the following initial pa-
rameters of this example. Let N “ 1000, β “ 0.6, γ “ 1, r “ 0.75,∆t “ 0.0025. The initial conditions
are given as Sp0q “ 816, Ip0q “ 184, Rp0q “ 0. By calculating the SIR solution, specifically the infectious
cases, we can calculate X0 and X1. These are calculated as X0 “ 107.3485, X1 “ 62.0702. Furthermore,
we will set the tolerance as highlighted in the algorithm as 10´6, and max-iterations as 100.

We can see here that there is a much larger difference in data points X0 and X1. Deducing that the
initial condition is within the vicinity of 184 is not exactly trivial, which here is the major let down of
this method, though the sensitivity of the initial guesses will be briefly discussed later. Let us take two
initial guesses

I0p0q “ 190,

ˆ

dI

dt

˙0

p0q “ ´80, I1p0q “ 170,

ˆ

dI

dt

˙1

p0q “ ´90, (2.3.3)

ùñ z0p0q “ lnp0.75 ˆ 190q,

ˆ

dz

dt

˙0

p0q “ ´
80

190
, z1p0q “ lnp0.75 ˆ 170q,

ˆ

dz

dt

˙1

p0q “ ´
90

170
.

These yield the following errors and other relevant information. See figure 4

L8 error “ 7.0021 ˆ 10´9 | L2 error “ 4.6221 ˆ 10´9.

Time till completion: 0.169251 seconds.

Iterations taken: 13.

9

Figure 4: I(0)= 184, ∆t “ 0.0025, Initial guesses: 2.3.3.

We now look to see how far we can push away from the solution (within reason) as to when we converge
or diverge, which will be the next topic we will briefly talk about. Let us take new initial guesses, given by

I0p0q “ 240,

ˆ

dI

dt

˙0

p0q “ ´150, I1p0q “ 130,

ˆ

dI

dt

˙1

p0q “ ´20, (2.3.4)

ùñ z0p0q “ lnp0.75 ˆ 240q,

ˆ

dz

dt

˙0

p0q “ ´
150

240
, z1p0q “ lnp0.75 ˆ 130q,

ˆ

dz

dt

˙1

p0q “ ´
20

130
.

With results

L8 error “ 6.6254 ˆ 10´8 | L2 error “ 5.7602 ˆ 10´8.

Time till completion: 0.169752 seconds.

Iterations taken: 10.

With the plot of results given by figure 5

Figure 5: I(0)= 184, ∆t “ 0.0025, Initial guesses: 2.3.4.

10

2.4 Sensitivity of the Newton-Broyden algorithm

One issue not yet touched on, is how sensitive the Algorithm is to initial guesses. On the last example
(2.3.4), we can see that our initial guess 2 is not a good representation of the solution, but yet, we still
have convergence in this example. A sensible question to ask is, do we always converge? Much like
Newtons method outside of the Observational model, the answer is not always. If, in the 1D case, we
are to far away from the root such that the convergence criteria are not met, or the root is a stationary
point, then we will more then likely diverge (or not converge) [3]. In the multidimensional case, if we
are again too far away from the root, or our jacobian becomes singular (or is ill-conditioned) [2], we will
again not converge. We now demonstrate an example.

Example 2.4 (Divergence, increasing cases). We again look at the examples given in 2.3.1 and 2.3.2,
using the same parameters but slightly different initial guesses. Let us now take;

I0p0q “ 25,

ˆ

dI

dt

˙0

p0q “ 10, I1p0q “ 16,

ˆ

dI

dt

˙1

p0q “ 8, (2.4.1)

z0p0q “ lnp0.75 ˆ 25q,

ˆ

dz

dt

˙0

p0q “
10

25
, z1p0q “ lnp0.75 ˆ 16q,

ˆ

dz

dt

˙1

p0q “
8

16
.

Of which given the parameters from example 2.2, this initially does not seem like such a bad set of initial
guesses. By following the steps of the Newton-Broyden algorithm, we can see where things start to go
wrong. We again note that the below will be in terms of zptq, and will distinguish between zptq and Iptq.
On calculating the initial jacobian, our first Newtons iteration becomes

„

ϕ3
ψ3

ȷ

“

„

2.4849
0.5000

ȷ

´

»

–

´13.6333837618108 ´66.8706025009116

´13.6062357417434 ´69.2837350091016

fi

fl

´1
„

3.23669618409084
´4.37891690813301

ȷ

(2.4.2)

ùñ

„

ϕ3
ψ3

ȷ

“

„

17.3798418913776
´2.48833365631926

ȷ

(2.4.3)

Now here we are given our new guess for the iterations as zp0q « 17.38 and dz
dt p0q « ´2.49. By using

zptq “ lnprγIptqq ùñ Iptq “
1

rγ
exppzptqq ùñ Ip0q “

1

0.75
expp17.38q ąą N (population).

And hence, our solution has blown up, in-fact way bigger than even sensible for the paramaters of the
model. This is more then likely due to the poor guesses illustrated with Broyden’s jacobian calculation.
Since Broyden’s method relies on a good initial jacobian and updates it on each iteration, with Newtons
method relying heavily on a good initial guess with an accurate jacobian, then we shouldn’t be shocked we
do not see convergence here. Further work on criteria for intervals of convergence given the data points
X0, X1 is needed.

2.5 Estimating the order of convergence for the Newton-Broyden algorithm

We first recall the definition for the order of convergence for a fixed point scheme (in 1D) [5].

Definition 2.1 (Order of Convergence - Fixed Point Iteration). Let ty1, y2, . . . , ynu be a sequence that
converges to some value ŷ. Then, if there exists some values α ě 1 and β ą 0 such that

lim
nÑ8

|yn`1 ´ ŷ|

|yn ´ ŷ|α
“ β, (2.5.1)

then we call α the order of convergence of the sequence ty1, . . . , ynu. If we define en`1 “ yn`1 ´ ŷ, then
the above is equivalent to

lim
nÑ8

|en`1|

|en|α
“ β, (2.5.2)

then we can notice by taking the limit as n Ñ 8 that

|en`1| « β|en|α | |en| « β|en´1|α, (2.5.3)

ùñ
|en`1|

|en|
«

β|en|α

β|en´1|α
“

ˆ

|en|

|en´1|

˙α

ùñ α «
lnpen`1{enq

lnpen{en´1q
. (2.5.4)

11

In the standard literature, if α “ 1, this is called linear convergence, α “ 2 is called quadratic convergence
and for 1 ă α ă 2, this is called super linear convergence.

[3] It is well documented in the standard literature that for the Newtons root finding algorithm, if we
are close enough to the solution, we have quadratic convergence pα “ 2q. [6] For the Secant method,
it has been shown that we converge super-linearly, with the exact convergence being the golden ratio

pα “ 1`
?
5

2 « 1.618q. Considering that our Newton-Broyden’s method is a combination of the multi-
dimensional Secant method and Newton’s method, it is sensible to ask what order of convergence do we
expect? Since in any dimension, for a close enough guess, we would expect quadratic convergence for
Newtons method, but it is unclear how this is affected by Broyden’s estimation of the jacobian in higher
dimensions. Moreover with the adaption of solving the Observational model, how does one measure the
’error’?

As previously mentioned, the error we measure in the Newtons-Broyden’s algorithm is given by

normpf i0, f
i
1q “

b

`

f i0
˘2

`
`

f i1
˘2
,

and as normpf i0, f
i
1q Ñ 0, we converge to the solution (provided we are converging). Whats important here

is that in the 1D case, we don’t always know what the limit is we are approaching. In the Observational
model, we know that to converge to the unique solution, we must satisfy the following by definition;

lim
iÑ8

f i0 “ 0 | lim
iÑ8

f i1 “ 0.

Therefore, it is sensible to take the error norm as

ei “

b

`

f i0
˘2

`
`

f i1
˘2

´

b

p0q
2

` p0q
2

“

b

`

f i0
˘2

`
`

f i1
˘2
.

Then, by 2.5.4, we can take α as

αi «
lnpei`1{eiq

lnpei{ei´1q
. (2.5.5)

If we now show the errors for each of the initial conditions shown above (2.3.1,2.3.2,2.3.3 and 2.3.4),
by taking the last 5 errors from each, we can calculate the following estimated orders of convergence
(EOC).

2.3.1 errors 2.3.2 errors 2.3.3 errors 2.3.4 errors
e10 “ 0.0374 e9 “ 0.0354 e9 “ 0.1038 e6 “ 0.0486
e11 “ 0.0079 e10 “ 0.0019 e10 “ 0.0359 e7 “ 3.4480 ˆ 10´4

e12 “ 0.0034 e11 “ 3.8262 ˆ 10´4 e11 “ 8.3852 ˆ 10´4 e8 “ 7.3798 ˆ 10´5

e13 “ 6.2960 ˆ 10´5 e12 “ 2.7905 ˆ 10´5 e12 “ 2.5793 ˆ 10´6 e9 “ 1.9723 ˆ 10´6

e14 “ 8.0001 ˆ 10´7 e13 “ 1.8443 ˆ 10´7 e13 “ 3.3670 ˆ 10´9 e10 “ 5.4555 ˆ 10´9

Table 1: Errors for each of the four examples visited, each with the last 5 iterations up-to, and including,
convergence.

2.3.1 EOC’s 2.3.2 EOC’s 2.3.3 EOC’s 2.3.4 EOC’s
α11 “ 0.542 α10 “ 0.548 α10 “ 3.538 α7 “ 0.312
α12 “ 4.731 α11 “ 1.634 α11 “ 1.540 α8 “ 2.350
α13 “ 1.094 α12 “ 1.917 α12 “ 1.148 α9 “ 1.626

Table 2: Estimated orders of convergence using 2.5.5

As we can see from table 2, it seems we have at-least linear convergence in all of the cases (if we look
at the last α before convergence). Of-course, it would be interesting to see what would happened if we
let the tolerance be smaller than 10´6, would that massively impact our EOC, or are there other factors
including better/worse initial guesses? More investigation is needed.

As mentioned earlier, the Newton-Broyden method for solving the Observational model by using the
shooting method does not come without its problems. In the next section, we look to see if we can
improve on reliability issues of guessing we currently face in the shooting method.

12

3 The Finite Element Method

So far, we have already seen one way of solving the Observational model using a combination of a root
finding and the shooting method, and now we look to see if we can improve on our results using a finite
elements method. For those familiar with FEM, the problems we face in trying to solve 1.5.1 or 1.5.3 are
apparent, but for those not familiar, several good places to read up can be found here [4, 7]. We will also
provide an example of applying finite elements to a linear problem with an integral constraint shortly.

The first problem we need to address is how do we convert 1.5.1 or 1.5.3 into something we can apply a
finite element scheme to, whilst enforcing the nonlocal boundary conditions? There is more then one way
to tackle this problem. In the route that we take, we adopt the use of Lagrange multipliers via calculus
of variations. For more information about Lagrange multipliers in the context of optimization, visit [4].

In any second order linear finite element problem, our approach is always the same. We multiply by a
test function pvpxq P CpΩqq, perform IBP on the term with two derivatives, and move the problem from
an infinite space to a finite space by moving the problem to a finite element space. This means we need
to discretize our interval from infinitely many points to a carefully selected finite amount. Depending on
the problem, either a uniform or non uniform mesh is chosen. For the examples we discuss, a uniform
mesh will be used, which means we can make an arbitrary partition

0 “ x1 ă x2 ă x3 ă ¨ ¨ ¨ ă xn´1 ă xn ă xn`1 “ 1, (3.0.1)

such that by choosing a (sensible) n P N,

∆x “
1 ´ 0

n
, n P N,

xi`1 “ xi ` ∆x, @i P r1, ns.

Since we have now discretized our problem, we now set our finite element space where we want to solve
this problem as

V hΩ “ tvhpxq P CpΩq : vhpxq P C1pxi, xi`1q @i “ r1 : nsu Ă H1p0, 1q. (3.0.2)

Since V h is a linear space, an extremely useful property about working in this space is that it has a basis.
We can carefully choose this basis as the function ϕipxq as being equal to

ϕipxq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

1 ´
xi ´ x

∆x
x P rxi´1, xis,

1 ´
x´ xi
∆x

x P rxi, xi`1s,

0 Otherwise,

|
d

dx
pϕipxqq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

1

∆x
ϕipxq P rxi´1, xiq,

´
1

∆x
ϕipxq P pxi, xi`1s,

0 Otherwise.

(3.0.3)

Figure 6: Linear Basis functions (also called ”hat functions”) as defined in 3.0.3.

Of which admits the following property (by definition of the basis being linearly independent)

13

ϕipxjq “ δij “

#

1 i “ j,

0 i ‰ j,
(3.0.4)

where δ denotes the Kronecker delta function. For the example in the next section, we will refer back
here. We also note that H1p0, 1q is a Hilbert space, defined as

H1p0, 1q :“

#

f : p0, 1q Ñ R
∣∣∣ ∥f∥2L2p0,1q`

∥∥∥∥ dfdx
∥∥∥∥2
L2p0,1q

ă 8

+

. (3.0.5)

For more information about function spaces and norms, please visit the function spaces and norms section
at the beginning, or [7].

3.1 The Euler Lagrange equations

Some motivation for the formulation we will soon derive comes from the calculus of variations. Given
a functional (a function that inputs a function and outputs another function), one can use the Euler-
Lagrange equations to find the extremum (minimum or maximum) of said functional.

Theorem 3.1 (1D Euler - Lagrange equations). Let Y be defined as an integral of the form

Y pyq “

ż

Ω

mpt, y, y1q dt, (3.1.1)

with y1 “
dy

dt
, then the functional Y has an extremal function y if

Bm

By
´

d

dt

ˆ

Bm

By1

˙

“ 0. (3.1.2)

Proof. The proof for the E-L equations is well known and involves taking small perturbations of m, of
which can be found in various places, e.g. [8]

An example of a well known functional is Poisson’s principle (in which a special case admits Dirichlet’s
principle), of which we show below.

Remark 1 (Poisson’s Principle). Let Ω Ă R, f, u : R Ñ R, we define the following functional G as the
following

Gpuq :“

ż

Ω

˜

1

2

ˆ

du

dx

˙2

´ uf

¸

dx, (3.1.3)

with u P C2pΩq
Ş

C
`

Ω̄
˘

taking some specified boundary values. Then the function that minimizes G over
Ω is also the solution to Poisson’s equation.

Proof. By applying the Euler-Lagrange equation to 3.1.3, we have that

m “

˜

1

2

ˆ

du

dx

˙2

´ uf

¸

ùñ
Bm

Bu
“ ´f,

Bm

Bu1
“

du

dx
ùñ

d

dx

ˆ

Bm

Bu1

˙

“
d

dx

ˆ

du

dx

˙

“
d2u

dx2
,

6
Bm

Bu
´

d

dx

ˆ

Bm

Bu1

˙

“ ´f ´
d2u

dx2
“ 0,

ùñ ´
d2u

dx2
“ f, (3.1.4)

with u taking the specified boundary values as mentioned the above remark, and u1 :“
du

dx
.

Remark 2. By taking f “ 0 in Poisson’s principle, we have Laplace’s equation (Dirichlet’s Principle).

14

3.2 The Isoperimetric problem

Isoperimetric problems are optimization problems that involve some type of boundary condition and
integral condition. A homogeneous Dirichlet boundary value example is given by;

find the extremum of: Y pyq “

ż

Ω

mpt, y, y1q dt, (3.2.1)

subject to: W pyq “

ż

Ω

wpt, y, y1q dt “ A, (3.2.2)

and y “ 0, on BΩ. (3.2.3)

Then in order to solve this problem, it is equivalent to solve the following minimization problem.

Proposition 3.1. Given 3.2.1 , with its respective boundary and integral conditions, then it is equivalent
to solve;

find the extremum of: Ŷ pyq “

ż

Ω

mpt, y, y1q ´ λ

ˆ

wpt, y, y1q ´
A

|Ω|

˙

dt, (3.2.4)

where |Ω| is the length of the interval pΩ Ă Rq and λ is an unknown Lagrange multiplier (to be determined).
Then, by applying the Euler - Lagrange equation, we know the extremal function of Ŷ is satisfied by

BL

By
´

d

dt

ˆ

BL

By1

˙

“ 0, (3.2.5)

with L :“ mpt, y, y1q ´ λ

ˆ

wpt, y, y1q ´
A

|Ω|

˙

.

We now show how we solve an Isoperimetric problem using the Lagrange multiplier method using linear
finite elements. Let us take an example of Poisson’s principle (3.1.3), with two Neumann boundary
conditions and an integral constraint (note that without the integral constraint, the problem is ill-posed
- see section 6.2). We want to emphasise (and show) how we are using Lagrange multipliers in this
example, since the way one solves this problem is by enforcing integral constraints. This is important as
we will use an analogous approach in the Observational model later on.

3.2.1 Derivation and calculations

Example 3.1.

Minimize: Rpuq :“

ż 1

0

˜

1

2

ˆ

du

dx

˙2

` upxq

¸

dx, (3.2.6)

subject to:

ż 1

0

upxq dx “ 0 |
du

dw
p0q “ 1 |

du

dw
p1q “ 2.

Notice that this is indeed Poisson’s principle by taking f “ ´1 with natural boundary conditions. By
taking approach 3.1, the solution to 3.2.6 is given by

´
d2u

dx2
` λ “ ´1, (3.2.7)

with λ to be determined from the integral boundary condition. The finite element approach is to multiply
the equation we are looking to solve by a test function vpxq P Cp0, 1q and integrate over Ω “ p0, 1q. This
allows us to perform integration by parts to remove a derivative from the u term with two derivatives with
respect to t. Multiplying 3.2.7 by a test function and integrating over p0, 1q yields

ż 1

0

´
d2u

dx2
v ` λv dx “

ż 1

0

´v dx, @vpxq P Cp0, 1q. (3.2.8)

We now recall the integration by parts formula, i.e. by integrating the product rule and using the funda-
mental theorem of calculus (FTC), we have for a, b : R Ñ R, a, b P C1pΩq, Ω Ă R

15

d

dx

`

apxqbpxq
˘

“
da

dx
bpxq `

db

dx
apxq,

ùñ

ż

Ω

„

d

dx

`

apxqbpxq
˘

ȷ

dx “

ż

Ω

„

da

dx
bpxq `

db

dx
apxq

ȷ

dx,

FTC
ùñ

ż

Ω

da

dx
bpxq dx “ apxqbpxq

∣∣∣
BΩ

´

ż

Ω

db

dx
apxq dx, (3.2.9)

which implies that

ż 1

0

´
d2u

dx2
v dx “ ´

„ˆ

du

dx
v

˙ ∣∣∣1
0

´

ż 1

0

du

dx

dv

dx
dx

ȷ

“

ż 1

0

du

dx

dv

dx
dx´

ˆ

du

dx
v

˙ ∣∣∣1
0
.

This implies that 3.2.8 is equivalent to

ż 1

0

du

dx

dv

dx
` λv dx “

ż 1

0

´v dx`

ˆ

du

dx
v

˙ ∣∣∣1
0

@vpxq P Cp0, 1q. (3.2.10)

Equation 3.2.10 is what we refer to as a weak formulation. An important step now is to specify what
function space we are working in and consequently what space our functions live in. Since the first
derivative of u and v are within integrals, for the question to be well defined, we must have that

u, v P H1p0, 1q, (3.2.11)

where H1pΩq defines a Hilbert space (3.0.5) where the function and its (weak) derivative are square
integrable within the domain specified and hence, the integral equation given is well defined. Then by
discretising the problem as in 3.0.1 by choosing a (sensible) n P N, we can create our finite element space
as

V h “ tvhpxq P Cpr0, 1sq : vhpxq P C1pxi, xi`1q @i “ r1 : nsu Ă H1p0, 1q. (3.2.12)

Since V h is a linear space, then it admits a basis of functions (3.0.3). Then, in the finite element space,
our weak formulation becomes find uh P V h such that

ż 1

0

duh

dx

dvh

dx
` λvhpxq dx “

ż 1

0

´vhpxq dx`

ˆ

duh

dx
vhpxq

˙ ∣∣∣1
0

@vhpxq P V h. (3.2.13)

Since we now want to find uh P V h, we can express uh in terms of the V h basis functions from 3.0.3. Let

uhpxq “

n`1
ÿ

i“1

uiϕipxq, (3.2.14)

vhpxq “ ϕjpxq. (3.2.15)

Then by inserting 3.2.14 and 3.2.15 into 3.2.13, our finite element problem becomes

ż 1

0

˜

n`1
ÿ

i“1

ui

ˆ

d

dx
ϕipxq

˙

¸

ˆ

d

dx
ϕjpxq

˙

` λϕjpxq dx “

ż 1

0

´ϕjpxq dx`

ˆ

du

dx
ϕjpxq

˙ ∣∣∣1
0
. (3.2.16)

To solve this problem, we know by the properties of 3.0.4, for any arbitrary j ‰ t1, n` 1u, ϕjpxq is only
non zero in the interval pxj´1, xj`1q. Therefore, we can simplify the above into pn`2q linear simultaneous
equations, where pn` 1q of these equations come from the the ordinary differential equation, and the last
comes form enforcing the boundary condition onto the Lagrange multiplier. Since the sum is finite, by
Fubini’s theorem, we may interchange the summation and integral, so that 3.2.16 becomes

n`1
ÿ

i“1

ui

˜

ż xj`1

xj´1

ˆ

d

dx
ϕipxq

˙ ˆ

d

dx
ϕjpxq

˙

dx

¸

` λ

ż xj`1

xj´1

ϕjpxq dx “

ż xj`1

xj´1

´ϕjpxq dx`

ˆ

du

dx
ϕjpxq

˙ ∣∣∣1
0
.

(3.2.17)

If we now assign

16

Aij “

ż xj`1

xj´1

ˆ

d

dx
ϕipxq

˙ ˆ

d

dx
ϕjpxq

˙

dx, (3.2.18)

Cj “

ż xj`1

xj´1

ϕjpxq dx | Fj “

ż xj`1

xj´1

´ϕjpxq dx `

ˆ

du

dx
ϕjpxq

˙ ∣∣∣1
0
.

Then in block matrix notation, it is equivalent to solve the following system (since λ and U are the
unknown quantities we are searching for where we define U as the vector of the ui p“ upxiqq components)

(3.2.19)
„

A CT

C 0

ȷ „

U
λ

ȷ

“

„

F
M

ȷ

| A P Rpn`1qˆpn`1q, CT , F, U P Rpn`1q, λ,M P R.

In which after some brief calculations,

Ai,j “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

´
1

∆x
if tj “ i´ 1u

Ş

ti ‰ 1u,

2

∆x
if tj “ iu

Ş

ti ‰ 1, n` 1u,

´
1

∆x
if tj “ i` 1u

Ş

ti ‰ n` 1u,

1

∆x
if tj “ iu

Ş

ti “ 1, n` 1u,

(3.2.20)

Fj “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

´∆x if tj ‰ 1, n` 1u,

´
∆x

2
´ 1 if tj “ 1u,

´
∆x

2
` 2 if tj “ n` 1u,

| Cj “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

∆x if tj ‰ 1, n` 1u,

∆x

2
if tj “ 1u,

∆x

2
if tj “ n` 1u.

(3.2.21)

Proof. Left to the interested reader. We hint that the vector C uses the trapezium rule to enforce the
boundary conditions. To calculate F , simply look at the definition of the basis function over any interval.
To calculate A, it suffices to show that on for any ϕj is only non zero on the interval pxj´1, xj`1q. Further
information on these calculations can be found at [7].

Note that M denotes the integral constraint (given value is 0). The reason we have the vector C, is due
to using the trapezium rule on the ui components to enforce the boundary condition, in order to find the
value of the unknown Lagrange multiplier λ. All we need to do now is implement this into a numerical
program, of which we will use MATLAB.

3.2.2 Results

We claim that the solution to the minimization problem given as the Poisson ODE from

´
d2u

dx2
“ ´1 | u P p0, 1q,

du

dx
p0q “ 1 |

du

dx
p1q “ 2,

ż 1

0

upxq dx “ 0,

is given by

upxq “
1

2
u2 ` u´

2

3
.

17

By usual methods, the interested reader can indeed check this satisfies all the conditions. Knowing the
analytical solution is useful as it allows us to measure the error between our finite element approximation
and the true solution. Furthermore, we can show even with the use of Lagrange multipliers that we still
have quadratic order of convergence with respect to the L2 and L8 norm.

(a) FEM approximation against the solution, ∆x “ 0.1.(b) lnL2 errors vs ln∆x ùñ EOC = 2 (from table 3).

With the Lagrange multiplier value calculated as ´6.66 ˆ 10´16. We now present a table with varying
(uniform) mesh sizes, where each ∆xi denotes the distance between each nodal point, in which we calculate
the L2 and L8 errors, and present plots of the estimated order of convergence for both the L2 error and
L8 error.

∆x L2 error L2 EOC L8 error L8 EOC
∆x1 = 1/10 8.33 ˆ 10´4 - 8.33 ˆ 10´4 -
∆x2 = 1/20 2.08 ˆ 10´4 2 2.08 ˆ 10´4 2
∆x3 = 1/40 5.21 ˆ 10´5 2 5.21 ˆ 10´5 2
∆x4 = 1/80 1.30 ˆ 10´5 2 1.30 ˆ 10´5 2
∆x5 = 1/160 3.26 ˆ 10´6 2 3.26 ˆ 10´6 2

Table 3: A table of the estimated order of convergence (EOC) calculations taken from our isoperimetric
example for the L2 errors and L8 errors.

3.3 Adapting the Isoperimetric problem to solve the Observational model

In the example just conducted, we had a linear problem (w.r.t u within the finite element formulation) with
Neumann boundary conditions. As seen previously in the shooting method section, the Observational
model does not come with any standard prescribed boundary conditions, only the nonlocal integral
boundary conditions expressed by the data, along with a high level of non-linearity. Let us recall the
Observational model once more (w.r.t Iptq)

d2I

dt2
“

dI

dt

ˆ

1

I

dI

dt
´
βI

N

˙

´
βγI2

N
, (3.3.1)

X0 “ rγ

ż 1

0

Ipsq ds | X1 “ rγ

ż 2

1

Ipsq ds. (3.3.2)

An immediate problem we see before we can even think about making a weak formulation is how we deal
with the Iptq´1 term inside the bracket. The simplest and most obvious thing we can do is multiply all
terms by Iptq so that everything is well versed for creating a weak formulation. However, to ensure that
this is valid for all time, we must ensure that

lim
IÑ0

ˆ

1

I

dI

dt

˙

is bounded. (3.3.3)

So that multiplying by Iptq is well-posed. In fact, by substituting 1.1.1 into 3.3.3, we see that

18

lim
IÑ0

ˆ

1

I

dI

dt

˙

“ lim
IÑ0

1

I

ˆ

β
I

N
S ´ γI

˙

“ lim
IÑ0

β

N
Sptq ´ γ P p´γ, β ´ γq, (3.3.4)

by steady state analysis [1], since at the end of an epidemic - there are no more infectious people. Since
the limit does not blow up, we can continue getting the Observational model in the right shape for a
finite element scheme. By multiplying 3.3.1 by Iptq, we formally define the function P as

P pIq “ ´
d2I

dt2
I `

dI

dt

ˆ

dI

dt
´
βI2

N

˙

´
βγI3

N
“ 0. (3.3.5)

Proposition 3.2. We define PE´LpI, I 1, tq to be the functional that, when we look to find the extremum
of this functional over its domain subject to 3.3.1, we produce the function P , i.e.,

find the extremum of:

ż 1

0

PE´LpI, I 1, tq dt, subject to rγ

ż 1

0

Ipsq ds “ X0, (3.3.6)

find the extremum of:

ż 2

1

PE´LpI, I 1, tq dt, subject to rγ

ż 2

1

Ipsq ds “ X1. (3.3.7)

Then the weak formulation for each integral constraint is given by

F0pI, I 1, λ0, v0q “

ż 1

0

2

ˆ

dI

dt

˙2

v0 `

ˆ

dI

dt

˙ ˆ

dv0
dt

˙

I ´
βI2

N

ˆ

dI

dt

˙

v0 ´
βγI3

N
v0 (3.3.8)

`λ0prγqv0 dt´
dI

dt
Iv0

∣∣∣1
0

“ 0

F1pI, I 1, λ1, v1q “

ż 2

1

2

ˆ

dI

dt

˙2

v1 `

ˆ

dI

dt

˙ ˆ

dv1
dt

˙

I ´
βI2

N

ˆ

dI

dt

˙

v1 ´
βγI3

N
v1 (3.3.9)

`λ1prγqv1 dt´
dI

dt
Iv1

∣∣∣2
1

“ 0

@v0 P H1p0, 1q and @v1 P H1p1, 2q.

Proof. By using Proposition 3.1 and Lagrange multipliers, it is equivalent to finding;

find the extremum of:

ż 1

0

PE´LpI, I 1, tq ` λ0 prγIptq ´X0q dt, (3.3.10)

find the extremum of:

ż 2

1

PE´LpI, I 1, tq ` λ1 prγIptq ´X1q dt. (3.3.11)

For ease of exposition, we will only work with 3.3.10, since 3.3.11 is analogous. We define

Γ0 :“ PE´LpI, I 1, tq ` λ0 prγIptq ´X0q .

Then, by applying the Euler- Lagrange equation to 3.3.10, and by using the properties that differentiation
is a linear operator,

BΓ0

BI
´

d

dt

ˆ

BΓ0

BI 1

˙

“ 0 ùñ

ˆ

BPE´L

BI
` λ0rγ

˙

´
d

dt

ˆ

BPE´L

BI 1

˙

“ 0,

ùñ

„

BPE´L

BI
´

d

dt

ˆ

BPE´L

BI 1

˙ȷ

` λ0rγ “ 0,

!
ùñ ´

d2I

dt2
I `

dI

dt

ˆ

dI

dt
´
βI2

N

˙

´
βγI3

N
` λ0rγ “ 0,

noting that (!) uses the assumption we have made at the start of the proposition. By further multiplying
by a test function v0ptq P H1p0, 1q and integrating over p0, 1q, then by following the steps already outlined
in 3.2.9 for integrating by parts the term with two derivatives with respect to t, we have the desired
result.

Then our weak formulation is to find I P H1p0, 1q and I P H1p1, 2q, such that

F pI, I 1, λ0, λ1, v0, v1q “ rF0pI, I 1, λ0, v0q, F1pI, I 1, λ1, v1qs “ 0, (3.3.12)

@v0 P H1p0, 1q and @v1 P H1p1, 2q.

19

3.3.1 Choosing a finite element scheme - Newtons method

Since we have defined our weak formulation and function spaces, we are now at the stage that we need
to decide on a sensible scheme to deploy into our weak formulation and then move into the FEM space.
We admit sensible here is ambiguous, since the problem we are trying to tackle is novel and not well
studied. The first thoughts for a scheme that come to mind are fixed point methods (Picard iterations),
linearization techniques through Taylor’s expansion and various versions of Newton methods (i.e. damped
and non-damped). Further discussions of which methods are appropriate can be found in[4], depending
on the problem at hand. We will focus on using Newtons method. To use Newtons method, we will first
recall Taylor’s expansion for multi-variate functions.

Theorem 3.2 (Taylor’s theorem for multi-variate functions (1st order approximation)). Let η : Rn Ñ Rn
and be a k pě 2q times differentiable function at a point µ P Rn px P Rnq, then we can express η as

ηpxq “ ηpµq `

˜

n
ÿ

i,j“1

Bηi
Bxj

puq

¸

ˆ rx´ µsj,1 `Opx´ µq2, (3.3.13)

or in more compact notation,

ηpxq “ ηpµq ` Jpuqpx´ µq `Opx´ µq2. (3.3.14)

Where J is the pn ˆ nq jacobian matrix of the function η, and Opx ´ µq2 denotes terms of px ´ µq2 and
above.

As usual in Newtons method, we take a function and want to find its roots, so by setting a function equal
to 0, or in this case, our Taylor’s expansion - we have that a first order approximation is given by

ηpxq « ηpµq ` Jpuqpx´ µq “ 0 ùñ px´ µq « ´pJpuqq´1ηpµq, (3.3.15)

where pJpuqq´1 denotes the inverse of the jacobian mapping. Currently it is not clear how we can use
the above in a finite element scheme, but this will be revealed further down. We must now discretize the
domain into a (uniform) arbitrary partition with

0 “ t1 ă t2 ă t3 ă ¨ ¨ ¨ ă tn´1 ă tn ă tn`1 “ 2, (3.3.16)

such that by choosing an (even) n P p2 ˆ Nq,

∆t “
2 ´ 0

n
| ti`1 “ ti ` ∆t @i P r1, ns.

The reason for choosing an even n is due to how we enforce the Lagrange multipliers, and that D ti
such that ti “ 1 ptn

2 `1 “ 1q. If n R p2 ˆ Nq, we are not able to enforce the nonlocal integral boundary
conditions correctly. We are now ready to move our weak formulation in 3.3.12 into a finite element space
before we implement the above Newtons method. We define

V h0 :“ tvh0 ptq P Cpr0, 1sq : vh0 ptq P C1pti, ti`1q @i “ r1 : pn{2qsu Ă H1p0, 1q, (3.3.17)

V h1 :“ tvh1 ptq P Cpr1, 2sq : vh1 ptq P C1pti, ti`1q @i “ rpn{2q ` 1 : nsu Ă H1p1, 2q. (3.3.18)

Then our weak formulation in the finite element space becomes find Ih P V h0 and Ih P V h1 such that

F pIh, pIhq1, λ0, λ1, v
h
0 , v

h
1 q :“ rF0pIh, pIhq1, λ0, v

h
0 q, F1pIh, pIhq1, λ1, v

h
1 qs “ 0, (3.3.19)

@vh0 P V h0 and @vh1 P V h1 .

Remark 3 (Continuity of the solution). Since I P C2p0, 2q [1], we need to enforce I P Cp0, 2q into our
finite element formulation. Currently we have two vectors being solved simultaneously, but this does not
imply that the resulting solution provided will be continuous. Since we require I P Cp0, 2q, we can combine
(add) the respective boundary vector values from each vector at pt “ 1q to enforce continuity between the
two weak finite element formulations.

Since V h0 and V h1 admits a basis of functions, we can express Ihptq, vh0 ptq and vh1 ptq as

Ihptq “

n`1
ÿ

i“1

Iiϕiptq, (3.3.20)

vh0 ptq “ vh1 ptq “ ϕjptq, (3.3.21)

where ϕjptq is the linear basis function we previously defined in 3.0.3.

20

3.3.2 Calculating the finite element formulation

We now approach the task of calculating a rather daunting finite element formulation. We first approach
calculating F pIh, pIhq1, λ0, λ1, v

h
0 , v

h
1 q “ 0 by inserting 3.3.20 and 3.3.21 into 3.3.19. Then using the

Newtons approach, by incorporating an initial guess I0 we will talk about shortly, we then look to
calculate the jacobian and talk about how we enforce the Lagrange multipliers from the integral boundary
constraints to solve for Iptq.

Proposition 3.3 (Finite element formulation). We first start by noting that F pIh, pIhq1, λ0, λ1, v
h
0 , v

h
1 q P

Rpn`3q, where the first pn` 1q rows are from the finite element formulation calculations. The remaining
two entries we will come back to later. For j ‰ t1, n ` 1u, we state the following calculations, given all
the necessary parameter’s. We note that going down, we are moving into the finite element formulation
of equation 3.3.8 from left to right.

ż tj`1

tj´1

2

˜

n`1
ÿ

i“1

Ii

ˆ

d

dt
ϕiptq

˙

¸2

ϕjptq dt,

“

j
ÿ

ζ“j´1

ż tζ`1

tζ

2

˜

n`1
ÿ

i“1

Ii

ˆ

d

dt
ϕiptq

˙

¸2

ϕjptq dt,

“
1

∆t

`

I2j ` I2j´1 ´ 2IjIj´1

˘

`
1

∆t

`

I2j ` I2j`1 ´ 2IjIj`1

˘

. (3.3.22)

ż tj`1

tj´1

˜

n`1
ÿ

i“1

Iiϕiptq

¸ ˜

n`1
ÿ

i“1

Ii

ˆ

d

dt
ϕiptq

˙

¸

ˆ

dϕjptq

dt

˙

dt,

“

j
ÿ

ζ“j´1

ż tζ`1

tζ

˜

n`1
ÿ

i“1

Iiϕiptq

¸ ˜

n`1
ÿ

i“1

Ii

ˆ

d

dt
ϕiptq

˙

¸

ˆ

dϕjptq

dt

˙

dt,

“
1

2∆t

`

I2j ´ I2j´1

˘

`
1

2∆t

`

I2j ´ I2j`1

˘

. (3.3.23)

ż tj`1

tj´1

´
β

N

˜

n`1
ÿ

i“1

Iiϕiptq

¸2 ˜

n`1
ÿ

i“1

Ii

ˆ

d

dt
ϕiptq

˙

¸

ϕjptq dt,

“

j
ÿ

ζ“j´1

ż tζ`1

tζ

´
β

N

˜

n`1
ÿ

i“1

Iiϕiptq

¸2 ˜

n`1
ÿ

i“1

Ii

ˆ

d

dt
ϕiptq

˙

¸

ϕjptq dt,

“ ´
β

N

ˆ

pIjq
3

ˆ

1

4

˙

` pIj´1q3
ˆ

´
1

12

˙

` pIj´1q2Ij

ˆ

´
1

12

˙

` pIjq
2Ij´1

ˆ

´
1

12

˙˙

´
β

N

ˆ

pIjq
3

ˆ

´
1

4

˙

` pIj`1q3
ˆ

1

12

˙

` pIj`1q2Ij

ˆ

1

12

˙

` pIjq
2Ij`1

ˆ

1

12

˙˙

. (3.3.24)

ż tj`1

tj´1

´
βγ

N

˜

n`1
ÿ

i“1

Iiϕiptq

¸3

ϕjptq dt,

“

j
ÿ

ζ“j´1

ż tζ`1

tζ

´
βγ

N

˜

n`1
ÿ

i“1

Iiϕiptq

¸3

ϕjptq dt,

“ ´
βγ

N

ˆ

pIj´1q3
ˆ

∆t

20

˙

` pIj´1q2Ij

ˆ

∆t

10

˙

pIjq
2Ij´1

ˆ

3∆t

20

˙

` pIjq
3

ˆ

∆t

5

˙˙

´
βγ

N

ˆ

pIjq
3

ˆ

∆t

5

˙

` pIjq
2Ij`1

ˆ

3∆t

20

˙

` IjpIj`1q2
ˆ

∆t

10

˙

` pIj`1q3
ˆ

∆t

20

˙˙

. (3.3.25)

21

λ0rγ

ż tj`1

tj´1

ϕjptq dt,“ λ0rγp∆tq | ptj´1, tj`1q P p0, 1q, (3.3.26)

λ1rγ

ż tj`1

tj´1

ϕjptq dt “ λ1rγp∆tq | ptj´1, tj`1q P p1, 2q. (3.3.27)

Proof. We will prove 3.3.24, the rest are analogous after we show the integral calculations.

ż tj`1

tj´1

´
β

N

˜

n`1
ÿ

i“1

Iiϕiptq

¸2 ˜

n`1
ÿ

i“1

Ii

ˆ

d

dt
ϕiptq

˙

¸

ϕjptq dt,

“

j
ÿ

ζ“j´1

ż tζ`1

tζ

´
β

N

˜

n`1
ÿ

i“1

Iiϕiptq

¸2 ˜

n`1
ÿ

i“1

Ii

ˆ

d

dt
ϕiptq

˙

¸

ϕjptq dt.

For ζ “ j ´ 1

ż tj

tj´1

´
β

N

˜

n`1
ÿ

i“1

Iiϕiptq

¸2 ˜

n`1
ÿ

i“1

Ii

ˆ

d

dt
ϕiptq

˙

¸

ϕjptq dt, (3.3.28)

“ ´
β

N

ż tj

tj´1

pIj´1ϕj´1ptq ` Ijϕjptqq
2

ˆ

Ij´1
d

dt
pϕj´1ptqq ` Ij

d

dt
pϕjptqq

˙

ϕjptq dt. (3.3.29)

From 3.0.3, we know that
ˆ

Ij´1
d

dt
pϕj´1ptqq ` Ij

d

dt
pϕjptqq

˙

“ Ij´1

ˆ

´1

∆t

˙

` Ij

ˆ

1

∆t

˙

, pon ptj´1, tjqq.

Therefore 3.3.29 is equal to

“ ´
β

N

1

∆t
pIj ´ Ij´1q

ż tj

tj´1

pIj´1ϕj´1ptq ` Ijϕjptqq
2
ϕjptq dt,

“ ´
β

N

1

∆t
pIj ´ Ij´1q

ż tj

tj´1

I2j´1ϕ
2
j´1ptqϕjptq ` I2j ϕ

3
j ptq ` 2Ij´1Ijϕj´1ptqϕ2j ptq dt,

p:q “ ´
β

N

1

∆t
pIj ´ Ij´1q

˜

I2j´1

ż tj

tj´1

ϕ2j´1ptqϕjptq dt` I2j

ż tj

tj´1

ϕ3j ptq dt` 2Ij´1Ij

ż tj

tj´1

ϕj´1ptqϕ2j ptq dt

¸

.

We now show how one goes about calculating the product of the basis functions. By definition,

ż tj

tj´1

ϕ2j´1ptqϕjptq dt “

ż tj

tj´1

ˆ

1 ´
t´ tj´1

∆t

˙2 ˆ

1 ´
tj ´ t

∆t

˙

dt. (3.3.30)

If we introduce a substitution y “
t´ tj´1

∆t
ùñ dy “

1

∆t
dt, then 3.3.30 is equivalent too

∆t

ż 1

0

p1 ´ yq2p1 ` py ´ 1qq dy “ ∆t

ż 1

0

y ´ 2y2 ` y3 dy “ ∆t

ˆ

1

12

˙

. (3.3.31)

The rest are analogous. Therefore : is equivalent to

´
β

N

1

∆t
pIj ´ Ij´1q

ˆ

I2j´1

ˆ

∆t

12

˙

` I2j

ˆ

∆t

4

˙

` Ij´1Ij

ˆ

∆t

6

˙˙

. (3.3.32)

Of which after expanding and simplifying gives the first half of the result. We will only make minor
comments for ζ “ j since most of the calculations are the same.

For ζ “ j, after expansion, the first line looks like;

´
β

N

ż tj`1

tj

pIj`1ϕj`1ptq ` Ijϕjptqq
2

ˆ

Ij`1
d

dt
pϕj`1ptqq ` Ij

d

dt
pϕjptqq

˙

ϕjptq dt. (3.3.33)

Here we note that since we are now looking at integrating over ptj , tj`1q, the weak derivative of ϕjptq
changes from the previous computation, since we are now on a different interval. We leave the rest to
the interested reader, but note all tools needed have been shown in the above calculations.

22

We also need to talk about some specific points, primarily j “ 1, j “ n ` 1 and finally the midpoint
j “ n

2 ` 1. For j “ 1, ϕ1ptq is non zero only on the interval pt1, t2q, and hence, combining all of the terms
together, we formally give F1pIh, pIhq1, λ0, λ1, v

h
0 , v

h
1 q “ F1 as

F1 “
1

∆t

`

I21 ` I22 ´ 2I1I2
˘

`
1

2∆t

`

I21 ´ I22
˘

(3.3.34)

´
β

N

ˆ

pI1q3
ˆ

´
1

4

˙

` pI2q3
ˆ

1

12

˙

` pI2q2I1

ˆ

1

12

˙

` pI1q2I2

ˆ

1

12

˙˙

´
βγ

N

ˆ

pI1q3
ˆ

∆t

5

˙

` pI1q2I2

ˆ

3∆t

20

˙

` I1pI2q2
ˆ

∆t

10

˙

` pI2q3
ˆ

∆t

20

˙˙

`
∆t

2
rγλ0 ` I1

ˆ

dI1
dt

˙

.

For j “ n` 1,

Fn`1 “
1

∆t

`

I2n`1 ` I2n ´ 2In`1In
˘

`
1

2∆t

`

I2n`1 ´ I2n
˘

(3.3.35)

´
β

N

ˆ

pIn`1q3
ˆ

1

4

˙

` pInq3
ˆ

´
1

12

˙

` pInq2In`1

ˆ

´
1

12

˙

` pIn`1q2In

ˆ

´
1

12

˙˙

´
βγ

N

ˆ

pInq3
ˆ

∆t

20

˙

` pInq2In`1

ˆ

∆t

10

˙

pIn`1q2In

ˆ

3∆t

20

˙

` pIn`1q3
ˆ

∆t

5

˙˙

`
∆t

2
rγλ1 ´ In`1

ˆ

dIn`1

dt

˙

.

Noting here that at the end of j “ 1 and j “ n`1, we have included the appropriate boundary condition.
When implementing this into a numerical solver, the finite element approximation is given at these points.

We now make special note for j “ n
2 ` 1 of which is the nodal point for the time value 1. We now look

to implement remark 3 into our finite element scheme, so that we can ensure continuity of the solution.
This means ϕn

2 `1 will be in both intervals p0, 1q and p1, 2q.

For j “
n

2
` 1,

Fpn{2q`1 “
1

∆t

`

I2j ` I2j´1 ´ 2IjIj´1

˘

(3.3.36)

`
1

∆t

`

I2j ` I2j`1 ´ 2IjIj`1

˘

`
1

2∆t

`

I2j ´ I2j´1

˘

`
1

2∆t

`

I2j ´ I2j`1

˘

´
β

N

ˆ

pIjq
3

ˆ

1

4

˙

` pIj´1q3
ˆ

´
1

12

˙

` pIj´1q2Ij

ˆ

´
1

12

˙

` pIjq
2Ij´1

ˆ

´
1

12

˙˙

´
β

N

ˆ

pIjq
3

ˆ

´
1

4

˙

` pIj`1q3
ˆ

1

12

˙

` pIj`1q2Ij

ˆ

1

12

˙

` pIjq
2Ij`1

ˆ

1

12

˙˙

´
βγ

N

ˆ

pIj´1q3
ˆ

∆t

20

˙

` pIj´1q2Ij

ˆ

∆t

10

˙

pIjq
2Ij´1

ˆ

3∆t

20

˙

` pIjq
3

ˆ

∆t

5

˙˙

´
βγ

N

ˆ

pIjq
3

ˆ

∆t

5

˙

` pIjq
2Ij`1

ˆ

3∆t

20

˙

` IjpIj`1q2
ˆ

∆t

10

˙

` pIj`1q3
ˆ

∆t

20

˙˙

`
∆t

2
rγpλ0 ` λ1q.

When evaluated at j “ n
2 ` 1, for ease of exposition I will leave this un-evaluated. Note in passing that

this is different to every other value (not including j “ 1 and j “ n ` 1) since instead of having one λi
value, we have both since we cover both intervals here. Something that may be missed by some is that
when adding the boundary conditions together, they consequently cancel out. So we now know the first
pn ` 1q rows of the vector F “ 0. As highlighted in 3.3.15, when looking to use Newtons method, we
look to solve for a difference around the point we are seeking to find by using an initial guess. For now,
let I0 be our initial guess for the function I, then we are looking to solve

δI “ I ´ I0 “ ´JpI0q´1F pI0q, (3.3.37)

Set: I “ I0 ` δI.

23

Before looking at the assembly of the jacobian, we will briefly talk about what the last two rows are for
in the vector F P Rn`3. Much like in the example of the linear finite elements problem we solved, we
need to make sure that the integral boundary conditions were satisfied. If we start with an initial guess
(curve), then the difference that δI must satisfy on each interval must be the difference between

Xi ´ rγ

ż i`1

i

I0psq ds, i “ 0, 1.

If we under-guess the solution, it must come up to satisfy the boundary conditions and vice versa on each
interval. Therefore

Fn`2 “ X0 ´ rγ

ż 1

0

I0psq ds | Fn`3 “ X1 ´ rγ

ż 2

1

I0psq ds.

Where on each iteration, we will use a quadrature rule (trapezium rule) to estimate the given integrals,
and hence estimate the difference values Fn`2 and Fn`3. We now look to assemble our jacobian matrix.
We formally define our jacobian as

JpI0q :“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

dF1

dI1
.

dF1

dIpn{2q`1

.
dF1

dIn`1

dF1

dλ0

dF1

dλ1

...
. . .

. . .
. . .

...

...
. . .

. . .
. . .

...

...
. . .

. . .
. . .

...

dFn`1

dI1
.

dFn`1

dIpn{2q`1

.
dFn`1

dIn`1

dFn`1

dλ0

dFn`1

dλ1

∆t

2
∆t . . .

∆t

2
0 . . . 0 0 0

0 . . . 0
∆t

2
∆t . . .

∆t

2
0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

I0

, (3.3.38)

where we have added an extra two rows at the bottom of the jacobian in which describe the integral
constraints of how much the initial guess can move (by δI) compared to the data points X0 and X1 we
are given. To be clear,

„

∆t

2
∆t . . .

∆t

2

ȷ

:“

„

∆t

2
∆t ∆t . . . ∆t ∆t

∆t

2

ȷ

. (3.3.39)

Of which is the direct use of the trapezium method (6.1.1). The component calculations of the jacobian
are fairly straight-forward since we already have the values of the vector F . We will show particular
calculations of interest. By usual rules of differentiation, we have

dF1

dI1
“

2

∆t
pI1 ´ I2q `

1

∆t
pI1q (3.3.40)

´
β

N

ˆ

pI1q2
ˆ

´
3

4

˙

` pI2q2
ˆ

1

12

˙

` pI1qI2

ˆ

1

6

˙˙

´
βγ

N

ˆ

pI1q2
ˆ

3∆t

5

˙

` pI1qI2

ˆ

3∆t

10

˙

` pI2q2
ˆ

∆t

10

˙˙

`

ˆ

dI1
dt

˙

.

dFn`1

dIn`1
“

1

∆t
p2In`1 ` ´2Inq `

1

2∆t
p2In`1q (3.3.41)

´
β

N

ˆ

pIn`1q2
ˆ

3

4

˙

` pInq2
ˆ

´
1

12

˙

` pIn`1qIn

ˆ

´
1

6

˙˙

´
βγ

N

ˆ

pInq2
ˆ

∆t

10

˙

pIn`1qIn

ˆ

3∆t

10

˙

` pIn`1q2
ˆ

3∆t

5

˙˙

´

ˆ

dIn`1

dt

˙

.

24

In which we take the finite element approximation of

dI1
dt

«
1

∆t
pI2 ´ I1q |

dIn`1

dt
«

1

∆t
pIn`1 ´ Inq.

The rest are easily found by simply differentiating the results in remark 3.3 with respect to the cor-
rect variable. Furthermore, looking at our unknown Lagrange multiplier terms, some more results at
interesting points are as follows

dF1

λ0
“

dF1

λ1
“

∆t

2
rγ,

dFpn{2q`1

λ0
“

dFpn{2q`1

λ1
“

∆t

2
rγ,

dFn`1

λ0
“

dFn`1

λ1
“

∆t

2
rγ.

We then have that for other values of j ‰ t1, n2 ` 1, n` 1u,

dFj
dλ0

“
dFj
dλ1

“ p∆tq rγ. (3.3.42)

We now have everything we need except a way of choosing an initial guess.

3.3.3 Choosing the initial finite element approximation

Choosing an excellent initial guess given the data points is not easy. If we consider that the data given
pX0, X1q could vary in size (or not at all), choosing one method for an initial guess is definitely not simple
or perhaps even sensible, since we know a Newtons method needs an initial guess close enough to the
solution to converge. We now show the method derived in our attempt at giving a sensible initial guess,
given any data points X0, X1.

The motivation for our method comes from many observations that the SIR equations exhibit exponential
curves at the very beginning of a pandemic. Therefore, it makes sense that we let our initial curve be
some form of an exponential curve, given in the form

I0ptq “ aˆ ebt, a, b P R.

Since we are given two data points X0, X1, we can only have two parameters in our initial curve. Then
we can solve for a and b, i.e.,

rγ

ż 1

0

aˆ ebt dt “ X0 | rγ

ż 2

1

aˆ ebt dt “ X1. (3.3.43)

We note that at this point, the paramaters r and γ are known. Then by solving and re-arranging, we
deduce that the parameters in terms of the data are given by

a “
1

rγ

pX0q2 ln

ˆ

X1

X0

˙

X1 ´X0
| b “ ln

ˆ

X1

X0

˙

.

Then plugging these values into 3.3.43 gives our initial guess, which also satisfies the integral constraints.

6 I0ptq “
1

rγ

pX0q2 ln

ˆ

X1

X0

˙

X1 ´X0
ˆ exp

ˆ

ln

ˆ

X1

X0

˙

t

˙

. (3.3.44)

25

3.3.4 Assembling the scheme

There is still a lot which has not been mentioned yet in terms of how the scheme runs and updates. So
far, we have chosen an initial guess for the infectious cases pI0q, but we need to also chose an initial guess
for our Lagrange multipliers λ00 and λ10. It is sensible to set these to 0 initially, since the algorithm will
make them what it needs to be for the integral boundary conditions to be satisfied on further iterations.
Convergence criteria here is specified in terms of the difference of the residuals (Ri) between iterations.
Let

Ri :“ Ii`1 ´ Ii P Rn`1, i ě 1, (3.3.45)

where Ii is the vector value solution to the finite element approximation at the i’th iteration. Then we
can use the norm of the residuals as a stopping criteria, say once ∥Ri∥ă 10´1.5. As discussed in later
results, more work needs to be done on choosing a sensible stopping criteria, dependant on the size of
the data points given. We now mention the algorithm in which uses everything we have talked about
and finalises all the details needed to use the scheme, can be found in the algorithms section found in
subsection 5.2.

3.4 Finite element results

Example 3.2 (Finite element scheme - decreasing cases). Take the second example we looked at in the
shooting method, example 2.3. To save us scrolling back, we reproduce the the paramaters and information
given. Let N “ 1000, β “ 0.6, γ “ 1, r “ 0.75,∆t “ 0.0025. The initial conditions are given as
Sp0q “ 816, Ip0q “ 184, Rp0q “ 0. By calculating the SIR solution, specifically the infectious cases, we
can calculate X0 and X1. These are calculated as X0 “ 107.3485, X1 “ 62.0702. Furthermore, we will
set the tolerance as highlighted in the algorithm as 10´1.5, and max-iterations as 100. Then we have the
following results.

L8 error 0.5248 | L2 error “ 0.2144.

Time till completion: 2.747331 seconds.

Iterations taken: 100.

Figure 8: Finite element approximation, I(0)= 184, ∆t “ 0.0025 with parameters in 2.3.

We notice with our initial guess here, that with the tolerance given, we did not reach the norm of the
residuals to be less than 10´1.5, and so we reached our maximum iteration count. We notice also that
since we appear to converge, but not hitting the convergence criteria, our initial guess from the data must
have been close enough to the true solution. We now look at first example shown in the shooting method
with increasing cases.

26

Example 3.3 (Finite element scheme - increasing cases). Given the following paramaters; let N “ 1000,
β “ 1.5, γ “ 1, r “ 0.75,∆t “ 0.0025. The initial conditions are given as Sp0q “ 980, Ip0q “ 20, Rp0q “ 0.
By calculating the SIR solution, specifically the infectious cases, we can calculate X0 and X1. These are
calculated as X0 “ 18.9739, X1 “ 28.6179. Furthermore, we will set the tolerance as highlighted in the
algorithm as 10´1.5, and max-iterations as 100. Then in the first plot, we will show what using our initial
guess highlighted in 3.3.43.

Figure 9: Finite element approximation using our derived initial guess, I(0)=20, ∆t “ 0.0025.

L8 error 1.1072 | L2 error “ 0.5093.

Time till completion: 0.684001 seconds.

Iterations taken: 4.

As we can see here, we have convergence in 4 iterations, but there are errors associated clearly. We
note here, that the shape of the initial curve is definitely not good enough to converge to the solution, in
comparison to the example of decreasing cases where we are very close. We now show the same example,
but using a small translation p´10q of the Infectious cases solution as our initial FEM approximation.

Figure 10: Finite element approximation using a translation of the solution, I(0)=20, ∆t “ 0.0025.

27

L8 error 0.1330 | L2 error “ 0.0637.

Time till completion: 0.711791 seconds.

Iterations taken: 5.

We notice here even though the integral constraints from the initial guess is not satisfied initially, since
the shape of the initial guess is correct, we appear to converge in this instance to the solution. This leads
us to think that the shape of the initial guess is much more important then satisfying the initial integral
boundary constraints, since the next iteration of the FEM approximation will have more room to move to
satisfy the ODE.

4 Discussion of results

Now we have seen both the finite element method and shooting method at work in order to tackle the
Observational model. We set out to see if we could utilise the finite element method to give better results
without the worry of having to give initial guesses every time we looked to solve the model. We now
briefly give some comments on the results.

Accuracy of the solution: From the examples conducted, we can see comparing the relevant results
from the FEM and shooting method example sections that when the solution converged (in both cases),
the shooting method had a significantly smaller L2 and L8 error norms than compared to the finite
element scheme.

Computational time taken to converge: Of-course, this section will depend on the software ran
and computer used in order to do the calculations. However, re-checking the sections of results, we can
see there is a clear disparity in terms of time taken to converge (providing we converge). On average,
the shooting method took around 0.2 seconds on average to converge using around 10-13 iterations from
the examples seen. On the other hand, the FEM scheme took approximately 0.7-0.8 seconds provided it
converged. We also saw the example where we did not hit the tolerance for the residuals and we were
taken to 100 iterations which took the time to approximately 3 seconds.

We also note that in order to get the results we did with the FEM scheme, we had to take ∆t extremely
small p∆t “ 0.0025q, which means on every operation we are inverting a p803q2 matrix every iteration,
which of course is much more cost heavy than inverting the p2q2 matrix from the Newton-Broyden’s
algorithm. By taking ∆t larger in the FEM calculations, we found that the errors were larger than by
taking ∆t smaller.

Initial Guess/Guesses: From the results of the shooting method, we showed various different guesses
for the two examples highlighted. We showed that for sensible guesses, we mostly converged, and also
when the guesses were not as well chosen, there was still sometimes convergence. Using our derivation of
the exponential curve from the FEM section, we saw that when this guess was close to the solution, we
appear to converge to the solution. When this initial guess diverged away from the solution, primarily in
shape, the Newtons scheme did not favour well to converging to the true solution.

Reliability of the results: Most importantly, we want to know given data points X0 and X1, without
knowing the initial condition which method would be ’all-round’ more suitable. Since more work needs
to be done on choosing initial guesses for the finite element scheme, it is in my opinion that the shooting
method is currently the preferred method for now, since the FEM scheme is extremely sensitive to the
initial guess. On every choice of sensible guesses for the shooting method, we converged to the true
solution - and so no guess work had to be done in terms of checking our solution. Of-course, this is
limited by how good our initial guesses are, but when we converge, we know we’ve got the true solution.

Further work: Since the work on the FEM Newtons scheme with the two integral boundary conditions
is novel, we feel more work in this area would be of great benefit. We note that in our work, we have
only used linear finite element basis functions, there are of-course many other excellent choices for basis
functions which will give much more accurate results, some examples are quadratic and cubic basis
functions. More work is being conducted into the derivation of the Observational model in terms of
expanding compartments to make the model more applicable.

28

5 Algorithms

5.1 Shooting method algorithm

Algorithm 1 Newton-Broyden’s algorithm for solving the Observational model.

Algorithms: Runge-Kutta 4th order (RK4), Trapezium method (TM)
Input : Data: X0, X1 — Parameters: γ, β, r,N — Initial Guesses
Set : Tolerance, Max-iterations , ∆t ăă 1
Output : Solution for Infectious Cases (IC)

IC0 ÐÝ RK4pϕ0, ψ0q

IC1 ÐÝ RK4pϕ1, ψ1q

for i “ 0, 1 do
f i0 ÐÝ prγq ˆ TMpICi0q ´X0

f i1 ÐÝ prγq ˆ TMpICi1q ´X1

end

for i “ 0 do

for j “ 0, 1 do

df ji
dϕ

ÐÝ
f ji`1 ´ f ji
ϕi`1 ´ ϕi

df ji
dψ

ÐÝ
f ji`1 ´ f ji
ψi`1 ´ ψi

end

∆Fi ÐÝ

„

f0i`1 ´ f0i
f1i`1 ´ f1i

ȷ

∆Xi ÐÝ

„

ϕi`1 ´ ϕi
ψi`1 ´ ψi

ȷ

Ji ÐÝ

»

—

—

—

—

–

Bf0i
Bϕ

Bf0i
Bψ

Bf1i
Bϕ

Bf1i
Bψ

fi

ffi

ffi

ffi

ffi

fl

end

i ÐÝ 0
normpRiq ÐÝ Tolerance

while ppi ă Max-iterationsq and normpRiq ă Toleranceq do

Ji`1 ÐÝ Ji `
p∆Fi ´ Ji∆Xiq p∆Xiq

T

∥∆Xi∥2
„

ϕi`2

ψi`2

ȷ

ÐÝ

„

ϕi`1

ψi`1

ȷ

´ rJi`1s
´1

„

f0i
f1i

ȷ

ICi`2 ÐÝ RK4pϕi`2, ψi`2q

f i`2
0 ÐÝ prγq ˆ TMpICi`2

0 q ´X0

f i`2
1 ÐÝ prγq ˆ TMpICi`2

1 q ´X1

norm
`

Ri`1
˘

ÐÝ

b

`

f i`2
0

˘2
`

`

f i`2
1

˘2

i` 1 ÐÝ i

end

29

5.2 Finite element algorithm

Algorithm 2 Finite element algorithm for the Observational model.

Algorithms: Trapezium method (TM)
Input : Data: X0, X1 — Parameters: γ, β, r,N — I0ptq ÐÝ 3.3.44
Set : Tolerance, Max-iterations , ∆t ăă 1
Output : Solution for Infectious Cases (IC)

λ00 ÐÝ 0
λ01 ÐÝ 0

for i “ 1 ÝÑ n` 1 do
I0i ÐÝ I0ptiq

end

k ÐÝ 0
normpRkq ÐÝ Tolerance

while p0 ă k ă Max-iterations and normpRkq ă Toleranceq do

for i “ 1 ÝÑ n` 1 do

F ki ÐÝ Proposition 3.3|Ik

for j “ 1 ÝÑ n` 1 do

Jki,j ÐÝ
dF ki
dIj

end

end

F kn`2 ÐÝ X0 ´ prγq ˆ TMpIkptqqæp0,1q

F kn`3 ÐÝ X1 ´ prγq ˆ TMpIkptqqæp1,2q

for i “ 2 ÝÑ n
2 do

Jkn`2,i ÐÝ ∆t

Jki,n`2 ÐÝ p∆tqrγ

end

for i “ n
2 ` 2 ÝÑ n do

Jkn`3,i ÐÝ ∆t

Jki,n`3 ÐÝ p∆tqrγ

end

Jk1,n`2 ÐÝ Jk
pn{2q`1,n`2 ÐÝ Jk

pn{2q`1,n`3 ÐÝ Jkn`1,n`3 ÐÝ ∆t
2

Jkn`2,1 ÐÝ Jkn`2,pn{2q`1 ÐÝ Jkn`3,pn{2q`1 ÐÝ Jkn`3,n`1 ÐÝ ∆t
2 rγ

δIk “
`

Jk
˘´1

F k

for i “ 1 ÝÑ n` 1 do

Ik`1
i “ Iki ` δIki
Rk`1
i “ |Ik`1

i ´ Iki |

end

λk`1
0 ÐÝ λk0 ` Ik`1

n`2

λk`1
1 ÐÝ λk1 ` Ik`1

n`3

k ` 1 ÐÝ k

end

30

6 Supplemental section

6.1 Quadrature - trapezium method

In order to see whether or not the values calculated by the shooting and finite element methods satisfy
the integral boundary conditions, we must use some form of quadrature to estimate the integral values.
The most famous and well known quadrature rules are formed as part of the Newton-Cotes [3] group,
which were developed by Sir Isaac Newton and Roger Cotes. Whilst extremely interesting, we will only
talk about the trapezium rule (two point closed Newton Cotes method). The group of Newton-Cotes
closed formulas rely on taking a uniformly spaced mesh on the real line, between (and including) the
bounds of integration. Let us define an arbitrary uniform partition on ra, bs by taking n P N (the number
of nodal points we would like to have) as

a “ x1 ă x2 ă ¨ ¨ ¨ ă xn ă xn`1 “ b

∆x “
b´ a

n
, xi “ a` p∆xqpi´ 1q @i “ t1, 2, . . . , n, n` 1u

Then we can formally define the trapezium method as the following calculation

ż b

a

fpxq dx “
∆x

2
pfpaq ` fpbqq ` ∆x

n
ÿ

i“2

fpxiq `Opp∆xq2q (6.1.1)

ùñ

ż b

a

fpxq dx «
∆x

2
pfpaq ` fpbqq ` ∆x

n
ÿ

i“2

fpxiq (6.1.2)

Where ∆x describes the distance between any two arbitrary uniformly spaced nodal points, and Op∆x2q

denotes terms of ∆x2 and above. As suggested by the formula, we notice since 6.1.1 is order p∆xq2, then
as ∆x Ñ 0, the trapezium approximation approaches the true solution. More closely, if we look at any
∆x interval, the method approximates the area by taking the Lagrange polynomial between the values
of the nodal points at either side of the interval, and hence why it is called the trapezium method (the
area approximated is the shape of a trapezium).

6.2 Well-posedness example of Poisson’s equation with Neumann boundary
values and an integral constraint

To show Poisson’s equation with Neumann boundary values is ill posed without an integral constraint,
take the example

´
d2ω

dx2
“ x, | x P p0, 1q,

dω

dx
p0q “ ´1 |

dω

dx
p1q “ ´

3

2
.

(6.2.1)

Then ωpxq “ ´x3

6 ´ x ` α is a solution, with α P R, since by taking derivatives of the solution, we note
that we satisfy the ODE and the boundary conditions, but α is a free parameter and hence the problem
ill posed. By introducing the integral constraint

ż 1

0

ωpxq dx “ 0

Then this implies that α “ 13
24 .

Proof.
ż 1

0

´
x3

6
´ x` αdx “

„

´
x4

24
´
x2

2
` αx

ȷ ∣∣∣1
0

“ ´
1

24
´

1

2
` α “ 0

ùñ α “
13

24

Therefore the solution is now unique after introducing an integral constraint.

31

7 Source Code for MATLAB Simulations

We now attach the URL where the reader can try for them selves to have a go at using the discussed
numerical methods to solve for the Observational model: Link to GitHub repository.

References

[1] Campillo-Funollet E, Wragg H, Van Yperen J, Duong DL, Madzvamuse A. Reformulating the SIR
model in terms of the number of COVID-19 detected cases: well-posedness of the observational
model. Philosophical Transactions of the Royal Society A (to appear).

[2] Teukolsky, S.A., Flannery, B.P., Press, W.H. and Vetterling, W.T., 1992. Numerical recipes in C.
SMR.

[3] Burden, R.L., Faires, J.D. and Burden, A.M., 2015. Numerical analysis. Cengage learning.

[4] Langtangen, H.P. and Mardal, K.A., 2016. Introduction to numerical methods for variational prob-
lems. University of Oslo.

[5] Senning, J.R., 2007. Computing and estimating the rate of convergence.

[6] Vianello, M. and Zanovello, R., 1992. On the superlinear convergence of the secant method. The
American mathematical monthly, 99(8), pp.758-761.

[7] Venkataraman, C. Numerical solution of PDE’s, lecture notes from the University of Sussex.

[8] Jost, J., Jost, J. and Li-Jost, X., 1998. Calculus of variations (Vol. 64). Cambridge University Press.

32

	Abstract
	Motivation for a new model
	Derivation of the Observational model
	Boundary conditions
	The well-posedness of the Observational model
	Abstract of numerical methods

	The Shooting Method
	How does the shooting method work?
	Adapting the shooting method to the Observational model
	Shooting method results
	Sensitivity of the Newton-Broyden algorithm
	Estimating the order of convergence for the Newton-Broyden algorithm

	The Finite Element Method
	The Euler Lagrange equations
	The Isoperimetric problem
	Derivation and calculations
	Results

	Adapting the Isoperimetric problem to solve the Observational model
	Choosing a finite element scheme - Newtons method
	Calculating the finite element formulation
	Choosing the initial finite element approximation
	Assembling the scheme

	Finite element results

	Discussion of results
	Algorithms
	Shooting method algorithm
	Finite element algorithm

	Supplemental section
	Quadrature - trapezium method
	Well-posedness example of Poisson's equation with Neumann boundary values and an integral constraint

	Source Code for MATLAB Simulations

